Publications
2007
2006
The role of Broca’s area in grammatical computation is unclear, because syntactic processing is often confounded with working memory, articulation, or semantic selection. Morphological processing potentially circumvents these problems. Using event-related functional magnetic resonance imaging (fMRI), we had 18 subjects silently inflect words or read them verbatim. Subtracting the activity pattern for reading from that for inflection, which indexes processes involved in inflection (holding constant lexical processing and articulatory planning) highlighted left Brodmann area (BA) 44/45 (Broca’s area), BA 47, anterior insula, and medial supplementary motor area. Subtracting activity during zero inflection (the hawk; they walk) from that during overt inflection (the hawks; they walked), which highlights manipulation of phonological content, implicated subsets of the regions engaged by inflection as a whole. Subtracting activity during verbatim reading from activity during zero inflection (which highlights the manipulation of inflectional features) implicated distinct regions of BA 44, 47, and a premotor region (thereby tying these regions to grammatical features), but failed to implicate the insula or BA 45 (thereby tying these to articulation). These patterns were largely similar in nouns and verbs and in regular and irregular forms, suggesting these regions implement inflectional features cutting across word classes. Greater activity was observed for irregular than regular verbs in the anterior cingulate and supplementary motor area (SMA), possibly reflecting the blocking of regular or competing irregular candidates. The results confirm a role for Broca’s area in abstract grammatical processing, and are interpreted in terms of a network of regions in left prefrontal cortex (PFC) that are recruited for processing abstract morphosyntactic features and overt morphophonological content.
2005
The distinction between singular and plural enters into linguistic phenomena such as morphology, lexical semantics, and agreement and also must interface with perceptual and conceptual systems that assess numerosity in the world. Three experiments examine the computation of semantic number for singulars and plurals from the morphological properties of visually presented words. In a Stroop-like task, Hebrew speakers were asked to determine the number of words presented on a computer screen (one or two) while ignoring their contents. People took longer to respond if the number of words was incongruent with their morphological number (e.g., they were slower to determine that one word was on the screen if it was plural, and in some conditions, that two words were on the screen if they were singular, compared to neutral letter strings), suggesting that the extraction of number from words is automatic and yields a representation comparable to the one computed by the perceptual system. In many conditions, the effect of number congruency occurred only with plural nouns, not singulars, consistent with the suggestion from linguistics that words lacking a plural affix are not actually singular in their semantics but unmarked for number.