Publications by Type: Journal Article

2013

Gleditsch, N. P., Pinker, S., Thayer, B. A., Levy, J. S., & Thompson, W. R. (2013). The Forum: The Decline of War. International Studies Review, 15, 396-419.

2011

Michel, J.-B., Shen, Y. K., Aiden, A. P., Veres, A., Gray, M. K., Team, T. G. B., Pickett, J. P., Hoiberg, D., Clancy, D., Norvig, P., Orwant, J., Pinker, S., Nowak, M., & Lieberman-Aiden, E. (2011). Quantitative analysis of culture using millions of digitized books. Science, 331, 176-182.

We constructed a corpus of digitized texts containing about 4% of all books ever printed. Analysis of this corpus enables us to investigate cultural trends quantitatively. We survey the vast terrain of ‘culturomics,’ focusing on linguistic and cultural phenomena that were reflected in the English language between 1800 and 2000. We show how this approach can provide insights about fields as diverse as lexicography, the evolution of grammar, collective memory, the adoption of technology, the pursuit of fame, censorship, and historical epidemiology. Culturomics extends the boundaries of rigorous quantitative inquiry to a wide array of new phenomena spanning the social sciences and the humanities.

2010

2009

Sahin, N. T., Pinker, S., Cash, S. S., Schomer, D., & Halgren, E. (2009). Sequential Processing of Lexical, Grammatical, and Phonological Information Within Broca’s Area. Science, 326, 326(5951), 445-449.

Words, grammar, and phonology are linguistically distinct, yet their neural substrates are difficult to distinguish in macroscopic brain regions. We investigated whether they can be separated in time and space at the circuit level using intracranial electrophysiology (ICE), namely by recording local field potentials from populations of neurons using electrodes implanted in language-related brain regions while people read words verbatim or grammatically inflected them (present/past or singular/plural). Neighboring probes within Broca’s area revealed distinct neuronal activity for lexical ( 200 milliseconds), grammatical ( 320 milliseconds), and phonological ( 450 milliseconds) processing, identically for nouns and verbs, in a region activated in the same patients and task in functional magnetic resonance imaging. This suggests that a linguistic processing sequence predicted on computational grounds is implemented in the brain in fine-grained spatiotemporally patterned activity.