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A striking fact about human cognition is that we like to process quantitative I 

information in graphic form. One only has to look at the number of ways I 

in which information is depicted in pictorial form-lim, bar, and pie graphs, 
4 

Venn diagrams, flow charts, tree structures, node networks, to name just 
a few-or to the great lengths that computer companies go to advertise 
the graphic capabilities of their products, to see that charts and graphs 
have enormous appeal to people. All of this is true despite the fact that 
in virtually every case, the same information can be communicated by 
nonpictorial means: tables of numbers, lists of propositions cross-refer- I ! 
enced by global variables, labeled bracketings, and so on. Perhaps pictorial 
displays are simply pleasing to the eye, but both introspection and exper- 
imental evidence (Carter, 1947; Culbertson & Powers, 1959; Schutz, l%la, I 

l%lb; Washburne, 1927) suggest that, in fact, graphic formats present 
information in a way that is easier for people to perceive and reason about. 
However, it is hard to think of a theory or principle in contemporary 
cognitive scicnce that explains why this should be so; why, for example, 
people should differ so strikingly from computers in regard to the optimal 
input format for quantitative information. 

The goal of this chapter is to address this unexplained phenomenon in 
a systematic way. In particular, I propose a theory of what a person knows 
when he or she knows how to read a graph, and which cognitive operations 
a person executes in the actual process of reading the graph. This theory 
will be used to generate predictions about what makes a person better or 
worse at reading graphs, and what makes a graph better or worse at con- 
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veying a given type of information t o  a reader. In pursuing these goals, 
one must recognize a very pervasive constraint. Comprehending a graph 
(unlike, say, seeing in depth, uttering a sentence, o r  reaching for a target) 
is not something that anyone could argue is accomplished by a special- 
purpose mental faculty. Graphs are a recent invention and if they are an 
especially effective method of communication, it must be because they 
exploit general cognitive and perceptual mechanisms effectively. Any the- 
ory that hopes t o  explain the process of graph comprehension will have to 
identify the psychological mechanisms used in interpreting a graph, and 
which operating principles of each mechanism contribute to  the overall 
ease o r  difficulty of the graph-reading process. Thus, any theory of graph 
comprehension will draw heavily on general cognitive and perceptual the- 
ory, and where our knowledge of cognitive and perceptual mechanisms is 
sketchy, we can expect corresponding gaps in our ability to  explain the 
understanding of graphs. 

I. WHAT IS A GRAPH? 

There is a bewildering variety of graphs in cutrent use, ranging from the 
line and bar a a p h s  common in scientific journals, to  drawings in popular 
magazines in which the thickness of two boxer's arms might represent the 
missile strength of the U. S. and Soviet Union, o r  in which the lengths of 
the rays of light emanating from a yellow disk might represent the price 
of gold in different months. Nonetheless, all graphs can be given a common 
characterization. Each graph tries to  communicate to the reader a set of 
n-tuples of values on n mathematical scales, using objects whose ,visual 
dimensions (i.e., length, position, lightness, shape, etc.) correspond to the 
respective scales, and whose values on each dimension (i.e., an object's 
paiicular length, position, and so on) correlate with the values 0" the 
corresponding scales. The pairing is accomplished by virtue of the fact that 
any seen object can be described simultaneously by its values along a 
number of visual dimensions. For example, Fig. 4.1 represents a pairing 
of values on a nominal scale (countries) with values on a ratio scale (GNP) 
using objects (bars) whose horizontal position (a visual dimension) cor- 
responds to  a value on the first scale, and whose height (another visual 
dimension) corresponds to a value on the second scale. 

Fig. 4.2 represents a pairing of values on an ordinal scale (months) with 
values on an intewal scale (temperature) using objects (wedges) whose 
radial position represents the month, and whose darkness represents the 
temperature. This characterization, which can be applied to  every graph 
I have seen, was first pointed out by Bertin (1%7) in his seminal treatment 
of charts, graphs, and maps. 
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As Bertin points out, this characterization implies that a graph reader 
must d o  three things: (1) Identify, via alphanumeric labels, the conceptual 
or real-world refer;& that the iraph is =onveying information about ( ~ e r -  
tin calls this "external identification"); (2) Identify the relevant dimensions 
of variation in the graph's pictorial content, and determine which visual 
dimensions corresponds to  which conceptual variable or.sca1e (Bertin's 
"internal identification*'); and (3) Use the particular levels of each visual 
dimension to draw conclusions about the particular levels of each concep- 
tual scale (Bertin's "perception of correspondence"). 

This simple observation implies that a graph reader must d o  two things. 
First, the reader must mentally represent the objects in the graph in only 
a certain way. In the case of Fig. 4.1, he o r  she must think of the bars in 



terms of their heights and their positions along the x-axis, but not - 
wrily in terms of the jagged contour formed by the tops of the b a ~ ,  th 
distance from the edge of the page, and so on. Second, the graph re* 
must remember or deduce which aspects of the visual constituents of lk 
graph stand for which of the mathematical scales that the graph is 1~~ 
to communicate. In the theory to be described here, these two f o m  d 
knowledge are embodied in two types of mental representation: the v ~ G  
description, which e n d e s  the marks depicted on the page in tern d 
their physical dimensions, and the graph schema, which spells out how tk 
physical dimensions will be mapped onto the appropriate mathemala 
scales. In using these structures to interpret a graph, a reader may 
different sorts of information from it: the exact value of some scale piled 
with a given value on another scale, the rate of change of values m 
scale within a range of values on another, a difference between the X& 

values of two entities, and so on. I will use the term conceptual ~ W S I I ~  

to refer to the particular sort of information that a reader wishes to extw 
from a graph, and conceptual message to refer to the information that tk 
reader, in fact, takes away from it (cf. Bertin, 1%7). 

In the rest of the chapter, I characterize each of these representations 
explicitly, propose ways in which they are constructed and transformed m 
the wurse of reading a graph, and attempt to gamer principles from ~ C I -  

ceptual and cognitive research dictating which aspects of these mntd 
processes and representations affect the ease of extracting a message from 
a graph. These proposals will be justified by reference to concrete instam 
of graphs and other visual displays whose degree of intuitive difficulty n 
exgained by the proposals, a"d io a number-of experiments designed to 
test the proposals. Finally, a framework for further theoreticaland a d d  
research on graph wmprehension will be outlined. 

11. THE VISUAL ARRAY 

The information in a graph arrives at the nervous system as a two-dimw 
sional pattern of intensities on the retinas. I will use the term visuala~@J 
to refer loosely to those early visual representations that depict the i n p  
in a relatively unprocessed, pictorial format (cf. the "primal sketch" a d  
''2% dimensional sketch" of Marr & Nishihara, f978, and the ''utfa 
array" of Kosslyn, Pinker, Smith, & Shwartz, 1979). Information in l b  

form is, of course, far too raw to serve as a basis for comprehending 
meaning of the graph. For that, we need a representational format tb 
can interface easily with the memory representations embodying k n d -  
edge of what the visual marks of the graph signify. Such memory We- 
sentations cannot be stated in terms of specific distributions of light 
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~~k (or even lines and edges) as would be represented in the visual array, 
haus vastly different intensity distributions (differing in size, orienta- 
t,,m. C ~ I I O ~ ,  shape, lightness, etc.) could all be equivalent exemplars of a 
p,cn type of graph. Thus, the representation that makes contact with 
U,MC~ knowledge of graphs must be more abstract than a visual array. 

Ill. THE VISUAL DESCRIPTION 

A fudamental insight into visual wgnition is that the output of the mech- 
a l m s  of visual perception is a symbolic representation or "structural 
hnption" of the scene, specifying the identity of its parts and the re- 
btum~ among them (see Winston, 1975; Marr & Nishihara, 1977; Palmer, 
1975. Pylyshyn, 1973). In this description, the various aspects of the scene, 
w h  as its constituent elements, and their size, shape, location, color, 
t~~ tu rc ,  and so on, together with the spatial relations among them, will be 
fxtorcd apart into separate symbols. As a result, each higher-level cog- 
~ I I I ~ C  prwess need only refer to the symbols representing the aspect of 
thc mnc that is relevant to its own wmputations. I will use the term visual 
&xrtp~Ion to refer to the structural description representing a graph, and 
*uu l  cncoding processes to refer to the mechanism that creates a visual 
krlption from a visual array pattern. 

Many such "languages" for visual descriptions have been proposed (Hin- 
tabn. 1979; Marr & Nishihara, 1977; Miller & Johnson-Laird, 1976; Palmer, 
IV75; Winston, 1975). Most of them describe a scene using propositions, 
-hmc ~~urIuhlcs stand for perceived entities or objects, and in which pted- 
k d ~ t s  \pcify attributes of and relations among the entities. It is assumed 
that thc visual encoding mechanisms can detect the presence of each of 
Ikw predicates in the visual array (see Ullman, 1984, for explicit proposals 
tancrlng thc sorts of mechanisms that are necessary to accomplish this). 
hbf cxamplc. one-place predicates specify a simple property of an object, 
~h a\ Circle (x) (i.e., "x is a circle"), Convex (x), Cuwe (I), Flat (x), 
l l ~~~ l : (m~u l  ( x ) ,  Linear (x), Small (x), and so on. Two-place predicates 
~ c ~ f y  the relations between two objects, such as Above (x, y) (i.e., "x 

h w  Y"). Adjacent (x, y), Below (x, y), Higher (x, y), Included-in (x, 
1. pms-loward (x, y), Parallel (x, y), Part (x, y), Near (x, y), Similar 

v l  (1. Y), and so on. Three and higher-place predicates indicate 
v d a ~ ~ ) n s  among groups of objects, such as Between (x, y, z )  (i.e., "x is 
h w c n  Y and z"), In-line (x, y, z ) ,  and so on. Parameterized predicates 
I& a numkr of variables and a number of quantitative constants, such 
a h~ (1. a )  (i.e., "x has area a"), Width (x, a), Location (x, a ,  P), 
i~thlnfs~ (1% a),  orientation (x, a), and so on. These predicates may also 
hs aPPro~riate for specifying continuous multidimensional attributes of 
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objects. For example, any member of a class of shapes ranging from a 
flattened horizontal ellipse through a circle to a flattened vertical ellipse 
can be specified by two parameters, representing the lengths of the major 
and minor axes of the ellipse, thus: Ellipse (x ,  a, ft). 

As is fitting for a discussion of graphs, I will use a graphic notation for 
visual descriptions. Each variable in a description will be represented by 
a small circle or node in which the variable name is inscribed (for simplicity's 
sake, I usually omit the variable nape in these diagrams); each one-place 
predicate will simply be printed next to the nodes representing the variables 
that they are true ofi and each two-place predicate will be printed alongside 
an arrow linking the two nodes representing the predicate's two arguments. 
Thus, a particular scene represented as the visual army in Fig. 4.3a will 
be represented as the visual description in Fig. 4.3b. or its graphic coun- 
terpart in Fig. 4.3~. 

Constraining the Visual Description 

If, as argued, a visual array representation is unsuitable for the compu- 
tations involved in extracting information from a graph, an unconstrained 
visual description is not much better. Since any visual array can be described 
in an infinite number of ways, a theory that allowed any visual description 
to be built from a visual array would be unable to predict what would 
happen when a given individual faced a given graph. For example, the 
array in Fig. 4.4a can give rise not only to the visual description in Fig. 
4.4~. but to the descriptions in Fig. 4.4b as well. 

Clearly, if it is not to be vacuous, the theory must specib which visual 
description is likely to be constructed in a given situation, based on our 
knowledge of how the human visual system works. Of course, these con- 
straints are simply the totality of our knowledge on perception. In the 
following section, I select four broad principles, each grounded in basic 
perceptual research, which constrain the form of visual descriptions in wdys 
that are relevant to graph comprehension. These principles will bear a 
large explanatory burden in the theory to be outlined here, since later I 
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claim that a prime determinant of the dificulty of a graph will be whether 
the visual description specifies explicitly the visual dimensions and group- 
ings that the graph maker recruited to symbolize the mathematical scales 
involved in the message of the graph. 

A. The Indispensability of Space 

It has long been known that an object's spatial location has a different 
perceptual status than itscolor, lightness, texture, or shape. Kubovy (1981) 
has addressed this issue systematically, and calls the two spatial dimensions 
of vision (plus the time dimension) indkpensable attributes, analogous to 
the dimensions of pitch and time in audition. He defines the term "indis- 
pensable attribute" as an attribute with the following properties: 



I .  Perceptual Numerosity. The first constraint on a visual description must 
k on what is to count as a variable or node. Variables should stand for 
perceptual units of some sort, and not for any arbitrary subset of the light 
wflected from a scene (e-g., the set of all light patches whose dominant 
wavelength is divisible by 100). Kubovy points out that our perceptual 
systems pick out a "unit" o r  an "object" in a visual scene as any set of 
light patches that share the same spatial position, but nor as a set of light 
patches that share some other attribute such as wavelength, intensity, or 
texture. Thus, Fig, 4.5a will give rise t o  the visual description in Fig. 4.5b, 
which partitions the array into three variables according to spatial location, 
rather than that in Fig. 4 . 5 ~ .  which partitions the array into two variables 
according t o  surface markings. 
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2. Configural Properties. The second constraint on a visual scene is the 
choice of predicates available in assembling a visual description. Naturally, 
there will be predicates corresponding to all perceptible physical dimen- 
sions (e.g., bright (x), red (x), shiny (x), lightness (x, a); in addition, there 
will be "configural" or "pattern" predicates corresponding to higher-order 
functions defined over the physical dimensions. Kubovy points out that 
most wnfieural properties in a sensory modality are defined over the in- 
dispensable attributes, which in the case of static visual objects are the two 
spatial dimensions. As a consequence, there exist many predicates for 
spatial shapes (each of which can be defined by certain well-defined changes 
in relative horizontal and relative vertical positions in a pattern), but few 
for nonspatial "shapes" defined by analogous well-defined changes in other 
dimensions. For example, the array in Fig. 4.6a contains elements whose 
heights increase with their horizontal position (lightness varying randomly); 
the array in Fig. 4.6b contains elements whose lightnesses increase with 
their orientations (position varying randomly). However, the increase is 
immediately noticeable only in Fig. 4.6a, where the increase is of one 
spatial dimension with respect to another, not in Fig. 4.6b. Correspond- 
ingly, there exists a predicate diagonal (x) that can be used to describe the 
scene in Fig. 4.6a. but nothing analogous for describing the scene in Fig. 
4.6b. whose elements would probably be specified individually. Note that 
as long as one member of a pair of related dimensions is spatial, there may 
be configural predicates available; when neither member is spatial, con- 

4. A THEORY OF GRAPH COMPREHENSION 

figural predicates are unlikely. Thus, the elements in Fig. 4.7 get darker 
with height, a change that, unlike that in Fig. 4.6b, is quickly noticeable, 
and may be captured by a single predicate (e.g., lightness-gradient (x)). 

3. Discriminability and Linearity. It has been known for a century that 
physical variables are not in general perceived linearly, tior are small dif- 
ferences between values of a physical variable always noticed. In the visual 
description, this corresponds to numerical variables (e.g., height (x, 17)} 
being distorted with respect to the real-world entities they represent, or 
to distinct numerical variables sharing the same value when the represented 
entities in fact differ [e.g., lightness (x, 17); lightness (y ,  17) for two boxes 
differing slightly in lightness]. Kubovy remarks that indispensable attributes 
afford finer discriminations and more linear mappings then dispensable 
attributes, and indeed, the Weber fraction for spatial extent is 0.04, and 
the Stevens exponent is 1.0, both indicating greater accuracy for the r e p  
resentation of spatial extent than for the representation of other physical 
variables used in graphs. 

4. Selective Attention. As a consequence of (1). each variable may have 
associated with it a unique pair of coordinates representing its location. 
This means that location could serve as an index or accessing system for 
visual information. This is a form of selective attention. and Kubovv sum- 
marizes evidence supporting the hypotheses that attention is more selective 
for indispensable attributes (two-dimensional location in vision) than for 
other visual attributes (see also Ullman, 1984). For example, one cannot 
easily attend to any visible object with a given shape, regardless of location 
(see Posner, Snyder, & Davidson, 1980). In the theory outlined in this 
chapter, selective attention according to location will consist of a mecha- 
nism that activates various encoding mechanisms to process a given spatial 
region of the visual array, in order to encode more predicates into the 
visual description or to verify whether a given predicate is true of the entity 
at that location. As we shall see, these mechanisms will play an important 
role in the "question-driven" or "top-down" processing of graphs. 

B. Gestalt Laws of Grouping 

The principles associated with the indispensability of space in vision place 
constraints on the parts of an array that variables may stand for, on how 
numerical variables represent physical continua, and on how predicates 
are encoded or verified with respect to the visual array. What is needed 
in addition is a set of principles governing how variables representing visual 
entities will be related to one another in visual descriptions, that is, how 
the atomic perceptual units will be integrated into a coherent percept. A 
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notable set of such principles is the Gestalt Laws of Perceptual Organization 
(Wertheimer, 1938). These laws dictate that distinct static perceptual ele- 
ments will be seen as belonging to a single configuration if they are near 
one another ("proximity"), similar in terms of one or more visual dimen- 
sions ("similarity"), smooth continuations of one another ("good contin- 
uation"), or parallel ("common fate") in the 2D plane. In terms of the 
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FIG. 4.8. 
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visual description, these principles will determine how variables are linked 
via the "part" relation in structures like those in Fig. 4.8a (where the law 
of similarity links asterisks to asterisks and circles to circles). Fig. 4.8b 
(where common fate links the asterisks to the line, and similarity links the 
asterisks to one another), and Fig. 4 .8~  (where good continuation keeps 
the straight and curved lines distinct, proximity links the asterisks and 
crosses to their respective lines, and similarity links asterisks to asterisks 
and crosses to crosses). Fig. 4.8 also shows how each collection of objects 
would be represented in a visual description. 

There is another way of indicating the effects of grouping within visual - - -  
descriptions. That is to link each member of a group to every other member 
using either the relation that gave rise to the grouping, or simply the relation 
"associated with." Thus, the visual array in Fig. 4.8a could also be rep- 
resented as in Fig. 4.9: This notation can be used to indicate that the 
variables are grouped together perceptually, but not so strongly as to be 
a distinct perceptual unit. In the rest of this chapter, I use both notations 
for grouping, though no theoretical distinction need be implied by the 
choice. 

C. Representation of Magnitude 

Implicit in the earlier discussion of the psychophysics of visual dimensions 
was the assumption that these dimensions are represented by continuous 
interval scales in visual descriptions. Though the fine discriminations and 
smooth magnitude estimation functions found in psychophysical experi- 
ments strongly warrant this assumption, there is reason to believe that 
quantity can be mentally represented in other ways as well. First, there is 
evidence from experiments on the absolute identification of values on 
perceptual continua that people cannot remember verbal labels for more 
than about seven distinct levels of a perceptual continuum (Miller, 1956). 
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and that in making rapid comparisons between remembered objects, sub- 
jects' reaction times are insensitive to the precise values of objects be- 
longing to distinct, well-learned categories (Kosslyn, Murphy, Bemesderfer 
& Feinstein, 1977). Findings such as these suggest that quantity can also 
be represented (indeed, in memory must be represented, in certain cir- 
cumstances) by one of a set of seven or so discrete symbols each specifying 
a portion of the range of quantities. These symbols could be signified by 
the Roman numerals I throueh VII. " 

Second, it is useful to distinguish between ratio values, where quantity 
is represented continuously but the units are arbitrary, and absolute values, 
where the units are well defined. The perception of pitch is a notorious 
example where a precise mental representation of a dimension is possible, 
but where for a majority of people, no absolute units can be assigned to 
the stimuli. Length, on the other hand, is an example of a continuum which 
people can judge either in ratio terms (e.g., one object being 1.7 times as 
long as another), or in terms of the well-known inches-feet-yards scale 
(e.g., Gibson, Bergman & Purdy, 1955). Indeed, whether subjects in mag- 
nitude estimation experiments are asked to use a well-learned versus their 
own arbitrarily selected modulus for estimated magnitude apparently af- 
fects their judgments (Stevens, 1961). Thus, interval descriptions must 
discriminate between these two forms ~Lmagnitude, which I will refer to 
an "interval-value" and "absolute-value," though ordinarily, visual de- 
scriptions will only contain "interval-value" propositions. 

Finally, as every commercial sign maker can attest, values on a contin- 
uum that are extreme in comparison with values of that continuum for 
other objects in a scene are very likely to be perceptually encoded (as 
opposed to less extreme values, which are apt to be encoded only if at- 
tended to). To account for this salience principle, relatively extreme values 
will be represented redundantly in visual descriptions: in ordinary prop- 
ositions such as height (x, a), as before, and also by special one-place 
predicates indicating the extremeness of the value along the particular 
dimension, such as tall (x), bright (x), short (x), and so on. When capacity 
limitations of visual descriptions are discussed later, it will be assumed that 
these special predicates have a very high probability of being encoded in 
the visual description. 

D. Coordinate Systems 

To express a unidimensional quality like lightness, one need specify in 
advance only the origin and the units of the scale to be used. However, 
for objects that vary along a number of continua. such as the position of 
an object on a two-dimensional piece of paper, or rectangles in a set varying 
in height and width, one has to specify how the variation will be partitioned 
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into dimensions and how each dimension will be represented. This is the 
issue of which coordinate system is appropriate to represent an object in 
a set varying along several dimensions. This involves questions about whether 
a polar or a rectangular coordinate system is used, whether there is a single 
or multiple origins, and so on. In their influential paper on shape recog- 
nition, Marr and Nishihara (1978) proposed that memory representations 
of shape are specified with respect to object-centered cylindrical coordinate 
systems. ~urthermore, the coordinate systems are distributed: Instead of 
there being a global coordinate system with a single origin and set of axes, 
there is a cylindrical coordinate system centered on the principal axis of 
the object (e.g., in the case of an animal, its torso), in which are specified 
the origins and axes of secondary coordinate systems each centered on a 
part of the object attached to the principal axis (e.g., the animal's head 
and limbs). These secondary coordinate systems are, in turn, used to specify 
the origins and axes of smaller coordinate systems centered on the con- 
stituent or attached parts of the secondary part (e.g., the thigh, shin, and 
foot of the leg), and so on. I will adopt here the following aspects of Marr 
and Nishihara's theory: (1) Shapes and positions are mentally represented 
principally in polar or rectangular coordinates (the former is just a slice of 
a cylindrical coordinate system orthogonal to its axis; the latter is just a 

I slice of a cylindrical coordinate system including its axis). (2) The locations 
of the different elements of a scene are represented in separate, local ! coordinate systems centered upon other parts of the scene, not in a single, 

I 
I global coordinate system. This means that in the visual description, the 

specification of locations (and also of directions and of parameterized shapes) 
of objects will be broken down into two propositions, one specifying the 
object upon which the coordinate system will be centered, the other spec- 
ifying the extent or value of the object within the coordinate system, as in 
Fig. 4.10. 

In fact, it is generally more perspicuous to indicate the extent along 
each dimension, and the location of the axis of the coordinate system 

I 

I 
corresponding to that dimension, separately, as in Fig. 4.11. 

The important question of which objects may serve as the coordinate 
system for which other objects is only beginning to be answered in the 

I vision literature, but the following condition seems to be a plausible first 
approximation: A spatial property of object a will be mentally specified 
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e x t e n t  

FIG. 4.11. 

in a coordinate system centered on object b when: ( I )  b is larger than a, 
and (2) a and b are perceptually grouped according to one or more of the 
Gestalt laws. 

IV. PROCESSING CONSTRAINTS ON VISUAL 
DESCRIPTIONS 

Since, with deliberate effort, people can probably encode an unlimited 
number of properties (e.g., the angle formed by imaginary lines connecting 
a standing person's right thumbnail, navel, and right kneecap), visual de- 
scriptions can, in principle, be arbitrarily large. In practice, however, two 
factors will limit the size of visual descriptions: 

1. Processing Capacity. Most models of cognitive processing have restric- 
tions on the processing capacity used to maintain the activation of nodes 
in a short-term visual description (Anderson & Bower, 1973; Newell & 
Simon, 1973). Specifically, it is claimed that between four and nine nodes 
may be kept active at one time, fewer if processing resources are being 
devoted to some concurrent task. This limitation reflects the well-known 
finiteness on human immediate memory and .processing capacity (Miller, 
1956). 

2. Default Encoding Likelihood and Automaticity. As mentioned, any 
predicate in a persons's visual repertoire can be added to a visual descrip- 
tion in response to higher-level processes testing for the presence of a 
particular predicate applied to a particular variable (e.g., "is x a square?"). 
However, before these top-down processes come into play, a number of 
predicates will be assembled into a visual description, because they are 
"just noticed." Different predicates have different probabilities of being 
encoded under these "default" circumstances. Presumably, some predi- 

4. A THEORY OF GRAPH COMPREHENSION 89 

innately have a high default encoding likelihood [e.g., enormous ( x ) ,  
dazzling (x)], whereas the default encoding likelihood of others is deter- 
mined by familiarity and learned importance. Shiffrin and Schneider (1977) 
and Schneider and Shiffrin (1977) propose that when a person frequently 
assigns a visual pattern into a single category, he or she will come to make 
that classification "automatically," that is, without the conscious applica- 
tion of attentional or processing capacity. Translated into the present vo- 
cabulary, this means that frequently encoded predicates will have a high 
default encoding likelihood. A number of experiments applying Shiffrin 
and Schneider's proposals to the learning of visual patterns confirm that 
the recognition of patterns becomes rapid, error-free, and relatively in- 
sensitive to other attentional demands as the patterns become increasingly 
well practiced. 

Therefore, it is important to distinguish among several sizes of visual 
descriptions. A description that is assembled automatically by purely data- 
driven (as opposed to top-down or conceptually driven) encoding proc- 
esses will be called the "default visual description." Its composition will 
be determined by the relative "default encoding likelihoods" of the various 
predicates satisfied by the visual array. In contrast, a description that is 
shaped by conceptual processes testing for the presence of visual predicates 
at oarticular locations in the array will be called an "elaborated visual 
description." Visual descriptions can also be classified in terms of whether 
short-term memory limitations are assumed to be in effect. A small visual 
description such as can be activated at a given instant will be called the 
"reduced visual description"; a visual description that includes all the pred- 
icates whose default encoding likelihood are above a certain minimum, 
plus all the predicates that are successfully tested for by top-down proc- 
esses, will be called the "complete visual description." The complete visual 
description will correspond to the description encoded by a hypothetical 
graph reader with unlimited short-term memory, or to the description 
integrating the successive reduced descriptions encoded by a normal graph 
reader over a long viewing period. One way to think quantitatively of the 
size of the default visual description that a person will encode is to suppose 
that the probability of a given true predicate's entering into a visual de- 
scription is a function of its default encoding likelihood multiplied by a 
constant between zero and one corresponding to the amount of capacity 
available (i.e., not devoted to other concurrent tasks). Wh$-n the constant 
is one, the resulting description will be a "complete" visual description; 
as the constant decreases with decreasing available processing capacity, 
the size of the description will be reduced accordingly. I adopt the final 
assumption that the level of activation of a node begins to decrease steadily 
as soon as it is activated, but that the reader can repeatedly re-encode the 
description by reattending to the graph (this simply corresponds to the 
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process of decay and rehearsal in short-term memory, see Crowder, 1976). 
Since encoding is probabilistic, the description will differ in composition 
somewhat from one encoding to the next. 

V. AN EXAMPLE 

Now that we have some constraints on the size and composition of visual 
descriptions, we can examine how the visual appearance of a particular 
graph might be described mentally. This will be the first step in working 
through an example of how a graph is understood according to the current 
theory. The example, shown in Fig. 4.12, is a bar graph plotting the price 
per ounce of a precious metal called "graphium" over a 6-month period. 
A complete "default" visual description is shown in Fig. 4.13. (Dotted 
lines represent propositions, omitted for the sake of clarity, that may be 
deduced from nearby propositions for similar pans). 

Most aspects of this visual description are motivated by the constraints 
outlined in the previous section. The scene is parsed into subscenes, each 
occupying a distinct location in the visual array (though for readability's 
sake, the locations for the subscene nodes will not always be printed in 
subsequent examples). This parse is done according to the ~es ta l t  prin- 
ciples, yielding separate nodes for the "L"-shaped framework and for the 
group of bars. By those same principles, the framework is connected by 
the "part" predicate to nodes representing its vertical and horizontal seg- 
ments, and each of these is linked by "near" predicates to nodes repre- 
senting the conceptual meaning of that text. Of course, the meaning of 

0 
Jan Feb if Apr M q  Jun 

MONTHS 

FIG. 4.12. 
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expressions such as "price of graphium" is, in all likelihood, mentally 
represented by an assembly of nodes linked in complex ways to the nodes 
representing the visual appearance of the text, but since the process of 
reading text is not of concern here, this simplified notation will suffice (the 
predicate associated with these "meaning" nodes will be replaced within 
quotation marks to indicate that they are not in fact unitary predicates). 
Predicates for the "bar" shape are attached to each bar node; the "tall" 
predicate is attached to the salient tallest bar; a pair of particularly dis- 
crepant bars is connected by the predicate "taller-than"; and the set of 
four progressively shorter bars is grouped together under its own node 
with its own shape predicate "descending-staircase." Finally, the height 
and horizontal position of each bar is specified with respect to a coordinate 
system centered on the appropriate framework segment, due to  the frame- 
work's being larger than the bars and associated with them by proximity 
and common fate. 

VI. CONCEPTUAL MESSAGES, 
CONCEPTUAL QUESTIONS 

We now have an example of the immediate input to the graph compre- 
hension process. Before specifying the process, it would be helpful to know 
what its output is as well. One can get a good idea of what that output 
must be simply by looking at a graph and observing what one remembers 
from it in the first few moments of seeing it o r  after it has just been removed 
from view. In the case of the graph in Fig. 4.12, one might notice things 
like the following: (1) the price of graphium was very high in March; (2) 
the price was higher in March than in the preceding month; (3) the price 
steadily declined from March to June; (4) the price was $20/ounce in Jan- 
uary; (5) the price in June was x (where x is a mental quantity about half 
of that for January, about a fifth of that for May, etc.). Basically, we have 
a set of paired observations here, where the first member can be a particular 
value of the independent variable (e.g., "March"), a pair of values (e.g., 
"March vs. February"), or a range of values (e.g., "the last 4 months"). 
The second number of each pair can be a ratio value (e.g., a value x along 
some mental ratio scale), an absolute value (e.g., "$20/ounce"), a differ- 
ence (e.g., "larger"), a trend (e.g., "decreasing"), or a level (e.g., "high"). 
(See Bertin, 1967, for a taxonomy of such questions). This information 
can be expressed in a representation consisting of a list of numbered entries, 
each specifying a pair (or, for more complex graphs, an n-tuple) of vari- 
ables, the extent o r  type of each independent variable (e.g., ratio-value, 
pair, range), and the value (or difference or  trend) of the corresponding 
dependent variable. Thus, the conceptual message representing the infor- 
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mation which we are assuming has been extracted from the graph in Fig. 
4.12 will look like this (the intuitive meaning of each entry can be made 
clearer by assuming the entry is a sentence beginning with the word when): 

1: V, absolute-value = March, V, level = high 

2: V, pair = March & February, V., difference = higher 

3: V, range = March-June, V, trend = decreasing 

4: V, absolute-value = January, V, absolute-value = $2010~. 

5: V, absolute-value = June, Vi ratio-value = x. 

In general, conceptual messages will be of the following form: 

i: V. ratio-value = a, V,, ratio-value = 6. . . . 
or or 

absolute-value absolute-value 
or or 

pair pair 
or or 

range range 

i designates the ith of an arbitrary number of entries (in principle), V. 
designates the ath of an arbitrary number of variables, and a designates a 
specific value in a form appropriate to  the entry (e.g., a "higher" or "lower" 
primitive symbol if the entry specifies a difference between values of the 
second variable corresponding to a pair of values of the first).' Note that 
the variables are differentiated by subscripts instead of being named by 
their real-world referents (e.g.. month); this was done in recognition of 
people's ability to  extract a great deal of quantitative and qualitative in- 
formation (indeed, virtually the same information) when a graph has no 
labels at all, leaving the referents of the variables unknown. When the 
referents are known, the conceptual message can indicate this with entries 
such as the following: 

6: V, = months, V, = price-of-graphium. 

Presumably, when the reader has integrated all the information he or  she 
wishes to extract from the graph, he or she can make the message repre- 
sentation more economical by replacing each V, by its associated referent 
symbol. 

' 11 is possible to have several equations in an entry refer to the same variable. e.g.: 17: 
V, ahsolirtc-wlue = 14, V, ratio-value = 132, V, level = high. V, level = low. 
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From here, it is a simple matter to  devise a notation for conceptual 
questions. (Recall that a conceptual question is a piece of information that 
the reader desires to extract from a graph). One can simply replace the a 
or p in the generalized entry by the "?" symbol, indicating that that is the 
unknown but desired information. Thus, if a person wishes to  learn the 
price of graphium during the month of April, we posit that he o r  she has 
activated the representation 

7: V, absolute-value = April, V, absolute value = ?. 

If the reader wishes to  learn the trend of graphium prices during the first 
2 months, he o r  she sets up the representation 

8: V, range = January-February, V, trend = ?. 

If the reader wishes to learn the month in which graphium prices were 
low, he or  she activates. 

9: V, absolute-value = ?, V, level = low, 

and so on. 

VII. THE GRAPH SCHEMA* 

S o  far, the theory has implicated the information flow diagram in Fig. 4.14. 
Now, one must specify the unknown component labeled with a "?." 

From the flow chart, we can see what this component must do: (1) It must 
specify how to translate the information found in the visual description 
into the conceptual message, and (2) It must specify how to translate the 
request found in a conceptual question into a process that accesses the' 
relevant parts of the visual description (culminating as before in one or  
more entries in the conceptual message). Furthermore, since (1) and (2) 
will involve different sorts of translations for different types of graphs (e.g., 
for line graphs versus bar graphs), the unknown component will also have 
to: (3) Recognize which type of graph is currently being viewed. The 
structure that accomplishes these three tasks will be called a graph schema, 
and it, together with the processes that work over it, will be discussed in 
this section. 

early 
visual encoding 
processes processes conceptual 

message 

conceptual 
questions - 

FIG. 4.14. 
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oreo -code 
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telephone -number A 
digits 
exchange 

FIG. 4.15. 

A. Schemas 

I take a "schema" to be a memory representation embodying knowledge 
in some domain, consisting of a description which contains "slots" o r  pa- 
rameters for as yet unknown information. Thus, a schema can specify both 
the information that must be true of some represented object of a given 
class, and the sorts of information that will vary from one exemplar of the 
class to another (see Minsky. 1975; Winston, 1975; Norman & Rumelhart, 
1975; Bregman, 1977; Schank & Abelson, 1977). T o  take a simple example 
unrelated to graphs, Fig. 4.15 could be a schema for telephone numbers, 
specifying the number and grouping of the digits for any number but not 
the identity of the digits for any particular number, these being represented 
by the parameters A-J.2 

This schema can be instantiated for a given person, becoming a repre- 
sentation of his or her telephone number, by replacing the parameters 
labeling the lowermost nodes by actual numerical predicates. In doing so, 
one is using the schema to recognize a candidate character string as a 
telephone number, by matching the schema against a visual description of 
the candidate string. The visual description of an as yet unrecognized 
number will be identical to  the schema, except that it lacks the conceptual 
nodes such as "area code" and "exchange," and that it contains constants 
in place of parameters. Once the schema is instantiated by the visual de- 
scription, one can use it to retrieve desired information about the telephone 
number using a node-by-node net searching procedure (i.e., one can quickly 

These uppercase parameters, which stand for unknown predicates, should not be con- 
fused with lowercase variables. which stand for perceptual entities and correspond to nodes 
in the visual description (although usually, the variable itself is omitted and only the node is 
depicted). 
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find "the first digit of the exchange" without searching the entire string, 
by starting at the top node and following the appropriate arrows down 
until the bottom node labeled by the desired number is reached). The 
double labeling of nodes is what allows schemas to be used both for rec- 
ognition and for searching: a visual description of a to-be-recognized pat- 
tern will contain labels such as "digit," but not "area code," so the "digit" 
labels in the schema are necessary for recognizing the object. However, 
the search procedures will be accessing conceptual labels such as "area 

' code," so these are necessary, too. 

B. Graph Schemes: A Fragment 

It seems, then, that a schema of this sort for graphs might fulfill two of 
our three requirements for graph knowledge structures: recognizing specific 
types of graphs, and .directing the search for desired pieces of information 
in a graph. What we now need is some device to translate visual information 
into the quantitative information of the type found in the conceptual mes- 
sage. These devices, which I will call message flags, consist of conceptual 
message equations, usually containing a schema parameter, which are ap- 
pended to predicates (nodes or arrows) in the graph schema. When such 
a node or arrow is instantiated by a particular visual description for a 

FIG. 4.16. 
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p p h ,  the parameters in the message flag are replaced by the corresponding 
value in the instantiated schema, and the equation is added to the con- 
ceptual message. Fig. 4.16a illustrates equation flags for a fragment of a 
bar graph schema (the flags are enclosed in rectangles and are attached to 
the nodes they flag by dotted lines). 

When a reader encounters the graph represented by the fragment of a 
visual description in Fig. 4.16b (the numbers representing values along a 
mental ratio scale with arbitrary units), he or she can instantiate the schema 
(i.e., replace the parameters A and B by the values 4 and 37). and add an 
entry to the conceptual message. All equations sharing a given i prefix are 
merged into a single entry, and each i is replaced by a unique integer when 
the entry is added to the conceptual message. Thus, the following entry is 
created: 

1: V, ratio-value = 4, V, ratio-value = 37 

This informal sketch should give the reader a general idea of how the graph 
schema is used in conjunction with the visual description to produce a 
conceptual message. In the sections following, 1 present a comprehensive 
bar graph schema and define more explicitly the processes that use it. 

C. A Bar Graph Schema ... 

Fig. 4.17 presents a substantial chunk of a schema for interpreting bar 
graphs. It is, intentionally, quite similar to the visual description for a bar 
graph in Fig. 4.13. The graph is divided into its L-shaped framework and 
its pictorial content, in this case, the bars. The framework is divided into 
the abscissa and the ordinate, and each of these is subdivided into the 
actual line and the text printed alongside it. In addition, the pips cross- 
hatchbg the ordinate, together with the numbers associated with them, 
are listed explicitly. The height and horizontal position of each bar are 
specified with respect to coordinate systems centered on the respective 
axes of the framework, and each bar is linked to a node representing its 
nearby text. An asterisk followed by a letter inside a node indicates that 
the node, together with its connection to other nodes, can be duplicated 
any number of times in the visual description. The letter itself indicates 
that each duplication of the node is to be assigned a distinct number, which 
will appear within the message flags attached to that instance of the node. 

The message flags specify the conceptual information that is to be "read 
off' the instantiated graph schema. They specify that each bar will con- 
tribute an entry to the conceptual message. Each entry will equate the 
ratio value of the first variable (referred to in the description as "IV," for 
Independent Variable) with the horizontal position of the bar with respect 
to the abscissa, and will equate the ratio value of the second variable (the 
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"DV" or Dependent Variable) with the bar's height with respect to the 
ordinate. In addition, the absolute value of the independent variable for 
an entry will be equated with the meaning of whatever label is printed 
below it along the abscissa. Finally, the referents of each variable will be 
equated with the meaning of the text printed alongside its respective axis. 

In devising these formalisms, I was at one point distressed that there 
was no straightforward way to derive absolute values for the dependent 
variable. The ratio value of each bar, corresponding to its height, could 
easily be specified, but since the absolute values are specified in equal 
increments along the ordinate, far from most of the bars, and specific to 
none of them, no simple substitution process will do. ~0wever.a simple 
glance at a bar graph should convince the reader, as it convinced me, that 
this is not a liability but an asset. The absolute value of the dependent 
variable at a given level of the independent variable is indeed not imme- 
diately available from a bar graph. Instead, one seems to assess the height 
of a bar in terms of some arbitrary perceptual or cognitive scale, and then 
search for the pip along the ordinate whose vertical position is closest to 
that height or mentally extrapolate a horizontal line until it hits the ordinate 
(see Finke & Pinker, 1983). The number printed next to the nearest pip, 
or a number interpolated between the numbers printed next to the two 
nearest pips, is deduced to be its absolute value. In contrast, the absolute 
value of a given level of the independent variable (i.e., which month it is), 
or the relative values of the dependent variable (e.g., its maximum and 
minimum values, its trends, or differences between adjacent values) seem 
available with far less mental effort. The most natural mechanism for 
representing absolute values of the dependent variable within the bar graph 
schema, and the one that happens to be in accord with the actual difficulty 
of perceiving these values, is to add to the conceptual message special 
entries asserting an equivalence between a certain level of the referent's 
absolute value and a certain level of the referent's ratio value, each entry 
derived from a labeled pip on the ordinate. The leftmost message flag in 
Fig. 4.17 sets up these entries; the symbol "=" indicates that the two 
equations are equivalent. Presumably, higher-level inferential processes, 
unspecified here, can use these equivalence entries to convert ratio values 
to absolute value within other entries in the conceptual message, calculating 
interpolated values when necessary3 

Earlier, we mentioned that the visual system can encode predicates that 

The schema presented here perhaps unfairly anticipates that the bar-graph example will 
have individual labels for each bar along the absicssa and a graduated scale along the ordinate. 
In fact. graduated scales often appear along the abscissas of bar graphs as well. In  a more 
realistic bar-graph schema, the subschemas for the pips of a graduated scale would be ap- 
pcnded to the abscissa as well as to the ordinate. 
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stand for well-defined groups of objects, and also that conceptual messages 
can contain entries specifying a trend of one variable over the range of 
another. An implication of the theory, then, is that graph readers (or at 
least experienced graph readers) should be able to translate directly a 
higher-order perceptual pattern, such as a group of bars comprising a 
staircase, into the quantitative trend that it symbolizes, without having to 
compute the trend by successively examining each element. Furthermore, 

, the difference in height between a pair of adjacent bars might be encodable 
into a single predicate, which should be directly translatable into an entry 
expressing a difference in the symbolized values. Also, a salient perceptual 
entity might be encoded as extreme (independently of the encoding of its 
precise extent on a ratio scale), and this should be directly translatable 
into an entry expressing the extremeness of its corresponding variable 
value, again without the mediation of ratio scale values. These direct trans- 
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tations at several levels of globality, we shall see, play an important role 
in predicting the difficulty of a graph or the effectiveness of a graph reader. 
Inthe theory, the translations are accomplished by the message flags in 
Fig. 4.18 (which should actually be part of Fig. 4.17, but is depicted sep- 
arately for the sake of clarity). Fig. 4.18 shows that bars in a graph can be 
described not only in terms of their heights and horizontal positions, but 
also in terms of being extremely tall or short, in terms of differences 
between the heights of adjacent pairs, or in terms of groups that constitute 
a perceptual whole. In each case the appropriate equation is attached to 
the predicate which encodes the attribute. Two additional notational con- 
ventions are introduced in the figure: the location of a pattern that occupies 
an extended region of the array is specified by its endpoints along a ratio 
scale (i.e., / / - I ) ,  both in the visual description and in the conceptual 
message. In addition, one of the equation flags for a pair of bars makes 
reference to nodes standing for the bars themselves, pj and q,, rather than 
for an attribute like horizontal position. It is assumed that when a pair of 
bars is encoded as a pair, some information about each bar is encoded as 
well. This information, be it ratio value, absolute value, or level, can then 
be linked with or substituted for appropriate symbols for the bars (p, or 
qj)  within the entry for the pair. 

VIII. PROCESSES 

In the account so far, I have relied upon the intelligence and cooperative- 
ness of the reader to deduce how the various structures are manipulated 
and read during graph comprehension. In order to use the theory to make 
predictions, it will be necessary to define explicitly the procedures that 
access the structures representing graphic information. Four procedures 
will be defined: a MATCH process that recognizes individual graphs as 
belonging to a particular type, a message assembly process that creates a 
conceptual message out of the instantiated graph schema, an interrogation 
process that retrieves or encodes new information on the basis of conceptual 
questions, and a set of inferential processes that apply mathematical and 
logical inference rules to the entries of the conceptual message. 

A. The MATCH Process 

The term is borrowed from Anderson and Bower's (1973) theory of long- 
term memory. This process compares a visual description in parallel with 
every memory schema for a visual scene, computes a goodness-of-fit meas- 
ure for each schema (perhaps the ratio or difference between the number 
of matching nodes and predicates and the number of mismatching nodes 
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and predicates), and selects the schema with the highest goodness-of-fit 
measure. This schema, o r  rather, the subset of the schema that the limited 
capacity processes can keep activated, is then instantiated (i.e., the pa- 
rameters in the schema are replaced by the appropriate constants found 
in the visual description). This is the procedure, alluded to in vague terms 
before, that uses the graph schema to recognize a graph as being of a 
certain type (e.g., bar graph, pie graph)/ 

B. Message Assembly 

This process accomplishes the translation from visual information to con- 
ceptual information, also alluded to in previous sections. It searches over 
the instantiated graph schema, and when it encounters a message flag, it 
adds the message it contains to  the conceptual message, combining into a 
single entry all equations sharing a given prefix (i.e., all those beginning 
with the same i : ) .  It is assumed that at the time that the MATCH process 
instantiated the parameters of the graph schema, the parameters within 
the message flags were instantiated as well. 

Memory and processing limitations imply that not every message flag 
in the graph schema is converted into an entry into the conceptual message. 
Some mav not be instantiated because the visual description was reduced 
or  because the default encoding likelihood of the was low; some 
may not be instantiated because of noise in the MATCH process; and some 
may be skipped over o r  lost because of noise in the message assembly 
process. For these reasons, we need a process that adds information to the 
conceptual message in response to  higher-level demands. 

C. Interrogation 

This process is called into play when the reader needs some piece of in- 
formation that is not currently in the conceptual message (e.g., the dif- 
ference between two values of the dependent variable corresponding to a 

This process has been oversimplified in several ways, in accordance with certain over- 
simphitions in the graph schema itself. For one thing, conceptual labels such as "abscissa" 
do not appear in visual descriptions, and so should not count in the goodness of fit calculations. 
This could be accomplished by distinguishing the conceptual or graph-specific predicates from 
the rest. perhaps by listing them, too, as message flags, which are "read o f f  the schema, 
but not used to instantiate it. The second complication is that different nodes and predicates 
should count differently in the recognition process. Some might be mandatory, some might 
be mandatorily absent, some might be characteristic to various degrees, some might occur 
in sets from which one member must occur. and so on. There are several ways of accomplishing 
this. such is the introduction of logical operators into schemas, or the use of a Bayesian 
recognition procedure, but limited space prevents me from outlining them here (see Anderson, 
1976; Anderson & Bower, 1973; Minsky, 1975; Smith, Shoben, & Rips, 1974; Winston, 1974). 
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given pair of independent variable values). As mentioned, each such re- 
quest can be expressed as a conceptual message entry with a "?" replacing 
one of the equation values. The interrogation process works as follows: 
The message flag within the graph schema that matches the conceptual 
question (i.e., is identical to  it except for a constant o r  parameter in the 
place of the "?") is activated. If it already contains a constant (i.e., if the 
equation it contains is instantiated, and thus, complete), the equation is 
simply added to the conceptual message. If it contains a parameter (i.e., 
is incomplete), the part of the visual description that corresponds to  that 
branch of the schema is checked to see if it contains the desired constant 
(e.g., if a certain ratio-value of the dependent variable is desired, the visual 
description is checked for the presence of a constant attached to the node 
representing the bar's height). If this constant is absent from the visual 
description, the encoding process for the relevant predicate (e.g., the proc- 
ess that encodes height) is commanded to retrieve the desired information 
for the relevant part in the visual array. It can d o  so by using the retinal 
coordinates attached to the node for the part, which are assumed to be 
present in the visual description (though they have been omitted from the . - 

diagrams in this chapter). Often, however, these coordinates will have 
decayed, and the coordinates of an associated part together with thedegree 
and direction of the association will be used to direct the encoding process 
to the correct location in the visual array. In other words, the conceptual 
question can initiate a top-down search for the desired part o r  part pa- 
rameter in the array. Once the desired information is encoded into the 
visual description, it can be instantiated in the schema and its message 
flags, and the instantiated equation within the flag can be added to the 
conceptual message. 

D. Inferential Processes 

Human intelligence consists of more than the ability to  read graphs. In the 
category inferential processes, I include the ability to perform arithmetic 
operations on the quantitative information listed in the conceptual message 
(e.g., calculating the rate of increase of a variable by subtracting one value 
from another value and dividing by a third value), to infer from the context 
of the graph (e.g., the paragraph in which it is embedded) what information 
should be extracted from the graph, to  draw qualitative conclusions rele- 
vant to some domain of knowledge based on the information in the graph, 
and so on. Naturally, I have little to  say about these abilities here; they 
are part of the study of cognition in general and not the study of graph 
comprehensions. However, I mention them here because many types of 
information can be obtained either directly from a conceptual message or  t 

indirectly from inferential processes operating on the conceptual message. 
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Which method is used, we shall see, affects the difficulty of a graph and 
the efficiency of a graph reader. 

The flow of information specified by the current theory is summarized 
in Fig. 4.19, where blocks represent information structures and arrows 
represent processes that transfer information among them. 

IX. WHERE DO GRAPH SCHEMAS COME FROM? 

The graph schema discussed so far embodies knowledge of bar graphs (in 
fact, a subset of bar graphs). Clearly, the theory must also account for 
people's ability to read other common types of graphs (line graphs, pie 
graphs, pictograms, etc.) and to understand completely novel forms of 
graphs as well (e.g., one in which the length of a ray of light emitted from 
a disk represents the price of gold in a given month). I propose that people 
create schemas for specific types of graphs using a general graph schema, 
embodying their knowledge of what graphs are for and how they are in- 
terpreted in general. A plausible general graph schema is shown in Fig. 
4.20. There are three key pieces of information contained in the schema. 
First, some objects, or parts of objects (i.e., a display's pictorial content) . 
are described'in terms of several visual attributes. Each visual attribute 
symbolizes a conceptual variable, and the set of values of the n visual 
attributes encoded for an object or object part corresponds to a particular 
n-tuple of associated values of the respective conceptual variables for a 
given conceptual entity. Second, the ratio magnitudes of attributes are 
usually to be specified in terms of a coordinate system centered upon a 
part of the graph framework. Third, textual material perceptually grouped 
with an object specifies the absolute value of the object; textual material 
perceptually grouped with the framework specifies the real-world referent 
of the attribute that the coordinate system centered on the framework 
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helps to specify; textual material associated with specific local regions of 
the framework specifies pairings of absolute and ratio values of the attribute 
specified by the associated coordinate system. Note that for maximum 
generality, text is linked to perceptual entities by the predicate "associ- 
ated," which can symbolize proximity, similarity, continuity, and so on. 
This helps to encompass graphs with -parts directly labeled and graphs 
exploiting common colors or shapes in keys and legends. Similarly, the 
predicate "attribute" is meant to encompass length, width, orientation, 
lightness, color, and so on. However, the indispensability of visual space 
motivates "geometric shapes" as opposed to arbitrary visual predicates 
being specified as typical frameworks, and spatially localizable "parts" 
being specified as the units over which attributes are defined. 

In encountering a certain type of graph for the first time, a reader will 
generate a specific graph schema for it using the general graph schema. 
The reader will have to replace the predicates "pictorial content," "as- 
sociated," "attribute," "geometric figure," and so on, by the actual visual 
predicates found in the visual description of the novel graph. This will be 
possible when the visual description has a structure similar to that of the 
general graph schema, with objects described in terms of attributes defined 
with respect to a framework, and textual labels associated with each. In 
addition, an astute graph reader will add to the new specific graph schema 
higher-order predicates (e.g., "descending-staircase") that can be taken to 
symbolize global trends (e.g., a decrease in the dependent variable). How- 
ever, the availability of these higher-order predicates, and how transpar- 
ently they symbolize their trends, will differ arbitrarily from graph type to 
graph type, and so these predicates cannot be included in any simple way 
within the general graph schema but must be created case by case. This 
process will be discussed in more detail in the section describing what 
makes a graph reader efficient. 

pushing the question back a step, we may ask, "Where does the general 
' 

graph schema come from?" This question is more profound, and the answer 
to it is correspondingly murkier. In one sense, one could answer that people 
are explicitly taught how to read certain types of graphs. But, this still 
leads one to wonder how people can generalize from the small set of graph 
types that they are exposed to in school (basically, bar graphs, line graphs, 
pie graphs, and pictograms) to the myriad exotic forms that are created 
and easily understood in popular magazines or areas of expertise. This is 
especially problematic given that formal instruction in graph reading does 
not teach the abstract concepts such as "attribute." "extent," "ratio value," 
and so forth, that in fact define what all graphs have in common. A deeper 
answer to this question is that a great many abstract concepts seem to be 
mentally represented by structures originally dedicated to the represen- 
tation of space and the movement of objects within it, a phenomenon that 
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manifests itself in language in many ways (see Clark, 1973; Cooper & Ross, 
1975; Jackendoff, 1978; Lakoff & Johnson, 1980; Talmy, 1978). In partic- 
ular, abstract quantities seem to be treated mentally as if they were lo- 
cations on a spatially extended scale (as can be seen in expressions such 
as The temperature is rising, John weighed in at 200 16s.. and many others), 
or more generally, as corresponding to virtually any other abstract wntin- 
uum as long as the "positive" and "negative" ends of the two continua 
are put into correspondence (see Cooper & Ross, 1975; Pinker & Birdsong, 
1979). Thus, the use of continuous spatial predicates to represent abstract 
variables is part of a larger cognitive pattern of using spatial properties to 
symbolize nonspatial ones; beyond this informal observation there is, un- 
fortunately, little that can be added with any precision. 

X. THE DIFFICULTY OF COMPREHENDING A GRAPH 

In this section, I consider what makes different types of graphs easy or 
difficult when particular types of information have to be extracted (by 
"type of information," I am referring to different conceptual questions, 
such as ones referring to ratio values vs. differences vs. trends). 

Aside from the limitations of the peripheral encoding mechanisms (i.e., 
limits on detectability, discriminability, and the accuracy of encoding mag- 
nitudes), the structures and processes described here permit any quanti- 
tative information whatsoever to be extractable in principle from a graph. 
This is because no information is necessarily lost from the visual description 
"upward" and there are no constraints on what the inferential processes 
can do with the information in the conceptual message. 

In practice, though, limits on short-term memory and on processing 
resources will make specific sorts of information easier or more difficult 
to extract. I have assumed that the visual description that is encoded is, 
in fact, a small subset of the complete visual description, and that noise 
in the MATCH and message assembly processes causes only a subset of 
that reduced visual description to be translated into conceptual message 
information. The remaining conceptual message entries will contain the 
information that is "easily extracted" from a graph, since a simple look- 
up procedure suffices to retrieve the information. On the other hand, if 
the desired information is not already in the conceptual message, it will 
have to be generated either by the top-down interrogation process, which 
adds entries to the conceptual message, or by the inferential processes, 
which perform computations on existing entries. Each of these processes 
can involve a chain of (presumably) capacity-limited computations, and 
each process properly includes the look-up of information from the con- 
ceptual message. Therefore, they are necessarily more time consuming and 
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memory consuming (since the results of intermediate computations must 
be temporarily stored) than the look-up of existing information in the 
conceptual message. And, in a limited-capacity, noisy system such as the 
human mind, greater time and memory requirements imply increased chances 
of errors o r  breakdowns, hence, increased difficulty. This conclusion can 
be called the Graph Difficulty Principle: A particular type of information 
will be harder to  extract from a given graph to the extent that inferential 
processes and top-down encoding processes, as opposed to conceptual 
k a g e  look-up, must be used. 

There will, in turn, be two factors influencing whether a desired type 
of information (i.e., the answer to  a given conceptual question) will be 
present in a conceptual message. First, a message entry will be assembled 
only if there are message flags specific to that entry appended to the graph 
schema. That, in turn, will depend on whether the visual system encodes 
a single visual predicate that corresponds to  that quantitative information. 
For example, I have assumed that because of the nature of visual encoding, 
a bar graph schema appends message flags to predicates for height, hori- 
zontal position, extremeness in height, extreme differences in height be- 
tween adjacent objects, and extended increases o r  decreases in height. This 
respectively makes ratio values of the dependent and independent varia- 
bles, extremeness in value, extreme differences in values, and global trends 
easily extractable. On the other hand, our visual systems d o  not supply a 
visual predicate for an object being a given number of ordinate scale units 
high, o r  for one bar's height t o  be a precise ratio of the height of another, 
o r  for the leftmost and rightmost bars to be of the same height, and so on. 
Therefore, there can be message flags and no conceptual message entries 
for the absolute value of the dependent variable, the exact ratio of de- 
pendent variable values corresponding to successive values of the inde- 
pendent variable, o r  the equality of dependent variable values correspond- 
ing to  the most extreme independent variable values. If a reader wishes 
the graph to answer these conceptual questions, he o r  she can expect more 
difficulty than for the conceptual questions discussed previously. 

The second factor influencing whether a conceptual message entry will 
be assembled is the encoding likelihoods of the predicates attached to the 
corresponding equation flags in the graph schema. In the example we have 
been using, if the predicate "descending-staircase" has a very low default- 
encoding likelihood, and hence is absent from the visual description on 
most occasions, the entry specifying a decreasing trend will not find its 
way into the conceptual message until interrogated explicitly. Incidentally, 
apart from innateness and automaticity factors, it is conceivable that the 
encoding likelihood of a predicate is also influenced by "priming": When 
a graph schema is activated (i.e., when the graph is recognized as being 
of a particular type), the encoding likelihoods of the visual predicates may 

4. A THEORY OF GRAPH COMPREHENSION 109 

be temporarily enhanced or  "primed" (see Morton, 1969). In other words, 
when a graph is recognized on the basis of partial recognition, the schema 
may make the rest of the information more likely to be encoded for as 
long as the schema is activated. 

As simple as the Graph Difficulty Principle is, it helps to  explain a wide 
variety of phenomena concerning the appropriateness of different types of 
graphs for conveying different types of information. Consider Cartesian 
line graphs, for example. The English language has a variety of words to 
describe the shapes of lines: straight, curved, wiggly, V-shaped, bent, steep, 
flat. jagged, scalloped, convex, smooth, and many more. It also has words 
to describe pairs of lines: parallel, intersecting, converging, diverging, in- 
tertwined, touching, X-shaped, and so on. It is safe to assume that the 
diverse vocabulary reflects an equally o r  more diverse mental vocabulary 
of visual predicates for lines, especially since the indispensability of visual 
space (see Section IIIA) implies that predicates for configural spatial p r o p  
erties such as shape should be readily available. The availability of these 
predicates affords the possibility of a line graph schema with a rich set of 
message flags for trends. For example, if "x" and "y" are nodes repre- 
senting lines on a graph, with V, the abscissa, V, the ordinate, and V, the 
parameter, the propositions on the left side of Table 4.1 can be flagged 
with the conceptual message equations on the right side of the table: This 
makes line graphs especially suited to  representing functions of one variable 
over a range of a second, the covariation versus independence of two 
variables, and the additive versus interactive effects of two variables on a 
third, and so on. In contrast, the mental vocabulary for the shapes implicit 
in the tops of a set of grouped bars is poor, perhaps confined to "ascending- 
staircase," "descending staircase," and "rectangular," as implied in Fig. 

TABLE 4.1 
Sam* QirntitthM Tmnda Auodxtd With Vhinl Prttarm 

rfwffcetf Equation Fhg 

Flat (xl V, trend = unchanging 
Steep (XI  V, trend = increasing rapidly 
Inverted U-shape (x) V, trend = quadratic 
U-shape (x) V, trend = quadratic 
Jagged (XI V, trend = random 
Undulating (x) V, trend = fluctuating 
Straight (x) V, trend = linear 
S-shape (XI V, trend = cubic 
Rectilinear (XI V, trend = abruptly changing 
Not flat (x) V, affects V, 
Parallel (x, y) V,, V, additively affects V, 
Converging (x, y) V,, V, interactively affects V, 
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TABLE 4.2 
~f Murtrting tic Itotottv Efficacy of Reding Trend* From TÃ§ble* Un* Graphs, 

and Bw Graphs 
- 

V,: 

A 30.0 35.0 45.0 60.0 80.0 
V,: 

B 20.0 32.0 45.0 57.5 70.0 

4.18. Correspondingly, there will be fewer possibilities for specifying trends 
in a schema for bar graphs, and less likelihood of assembling specific 
"trend" and "affects" entries in the conceptual message when a bar graph 
is processed. And the predicates for a pair of shapes implicit in the re- 
spective tops of two integrated groups of bars will be even scarcer, pre- 
venting "additively affects" and "interactively affects" entries from being 
encoded. Small wonder, then, that line graphs are the preferred method 
of displaying multidimensional scientific data, where cause-and-effect re- 
lations, quantitative trends, and interactions among variables are at stake. 
To convince yourself of the appropriateness of line graphs for these pur- 
poses, try to determine the nature of the trend of V, over the range of V,, 
and the nature of the interaction of V, and V, (a variable with two levels, 
A and B) on V2, from Table 4.2, Fig. 4.21a and Fig. 4.21b. It should be 
easy to see from the line graph in Fig. 4.21b that at level A of Variable 
3, Variable 2 is increasing and positively accelerating, whereas at B, it is 
increasing linearly. Similarly, one can see that Variables 1 and 3 interact 
in their effects on Variable 2. This is because the "straight" and "concave- 
up predicates, corresponding to "linear" and "positively accelerating" trends 
are readily encodable. In contrast, the like-colored bars in Fig. 4.21a do 
not form a group where relative heights can be described by a single 
predicate, and so inferring the trend necessitates a top-down, bar-by-bar 
height comparison, a difficult chore because it is hard to keep the heights 
of all the bars in mind (i.e., activated in the visual description) at once. It 
is even more difficult to extract the trends from the table, because not only 
is a number-by-number comparison necessary, but the process of encoding 
a rnultidigit numeral's magnitude seems to be intuitively slower and more 
effortful than the encoding of a bar's heighL5 

' Incidentally, though a line graph is better than other forms of data presentation for 
illustrating trends. typically only one way of constructing the line graph will illustrate a given 
trend optimally. For example, a line graph that used Variable 3 (i.e.. A vs. B) as the abscissa 
and Variable I as the parameter would not illustrate the linear and accelerating trends as 
transparently as the graph in Fig. 4.21b. since these trends no longer correspond to single 
attributes of a distinct perceptual entity, but must be inferred from the successive intervals 
separating the left end points of the five lines and those separating the right end points of - those tines. respectively. 
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However, try to answer the following question by examining the table, 
bar graph, and line graph just considered: What is the exact value of 
Variable 2 at level Â£ of Variable 3 and level 4 of Variable I? Most people 
1 have asked find the question easiest to answer with reference to Table 
4.1, a bit harder with reference to the bar graph, and hardest of all with 
reference to the line graph. This illustrates the purpose-specificity of graphs, 
which has frequently been noted in the graph comprehension literature, 
and which is an inescapable consequence of the present theory: Different 
types of graphs are not easier or more difficult across the board, but are 
easier or more difficult depending on the particular class of information 
that is to be extracted. In this case, we have already seen that absolute 
values of the dependent variable in a bar graph cannot be directly entered 
into the conceptual message since there are no visual predicates that cor- 
respond to them. Rather, specific ratio values of the dependent variables 
can be encoded, as can pairings between arbitrary absolute values and ratio 
values (from the numbers printed along the ordinate), but the absolute 
value of a particular entry must be computed by effortful inferential proc- 
esses using these two kinds of information. The line graph is harder still, 
because the Gestalt principles cause each entire line to be encoded as a 
single node rather than being broken up into a set of nodes, each corre- 
sponding to a level of Variable 1. Thus, when the conceptual question 
addresses the absolute value of Variable 2 corresponding to a particular 
value of Variable 1, there is no visual description node specific to the part 
of the line signifying that value, and one must be created by a top-down 
encoding process focused on a perceptually arbitrary point along the line. 

v,: 
A 

t 5 

FIG. 4.21. 
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That is also why it is sometimes easier to use a bar graph than a line graph 
to determine the difference between two levels of one variable correspond- 
ing to a pair of values on another (e.g., whether the Consumer Price Index 
is higher for March or June in Figs. 4.22a and 4.22b). 

In sum, we have seen that extracting information from a graph is easiest 
when the visual description contains predicates linked to message flags 
displaying equations that answer the conceptual question (less technically, 
when the information is conveyed by an easily perceivable visual pattern 
in the graph and when the reader knows that that pattern encodes desired 
information). As a consequence, (a) Line graphs should be best for illus- 
trating trends and interactions (since there exist many visual predicates for 
line shapes); (b) Tables should be best for illustrating absolute values of 
the dependent variable (since there is no way to specify absolute values 
for particular levels of the independent variable in line or bar graph visual 
descriptions and graph schemas); and (c) Bar graphs may be better than 
line graphs or tables for illustrating differences between dependent variable 
values corresponding to specific independent variable values (since the 
desired values are specified individually in the bar but not the line graph, 
and since it seems to be easier to encode a bar's height than to read a 
multidigit number). It is comforting to know that these three conclusions 
have been borne out many times in the empirical literature on graph com- 
prehension (Carter, 1947; Culbertson & Powers, 1959; Schutz, 1%1a, 1961b; 
Washburne, 1927). scanty though that literature is (see Wainer & Thissen, 
1981). 

Some Further Determinants 
of Graph difficulty 

In general, a graph maker will do best if he or she designs the graph so 
that the visual system parses it into units whose attributes correspond to 
the quantitative information that he or she wishes to communicate. In the 
previous section, we saw how this principle favors either line graphs, bar 
graphs, or tables, depending on the type of question the reader is to answer. 
Of course, these are not the only choices that face a graph designer. In 
this section, I briefly show how often design choices might be resolved by 
the Graph Difficulty Principle. 

1. One Graph with Two Lines or Two Graphs with One Line? As men- 
tioned, the visual system has predicates describing groups of nearby lines 
(e.g.. Parallel (x,  y ) .  Fan-shaped (x ,  y,  z), Intersecting (x, y ) ,  etc.). These 
correspond to specific types of interactions between variables (e.g., ad- 
ditive, multiplicative, inversely multiplicative, etc.). Thus, questions about 
interactions can be answered quickly if the lines are in close enough prox- 
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imity to the predicate describing them as a group to be encoded. However, 
if the lines are in different graphs, they will be encoded as units and their 
interactions must be extracted by interrogating their slopes separately and 
inferring the interaction from these slopes. Thus, when interactions are of 
interest, lines should be plotted on a single graph (unless, of course, the 
number of overlapping lines is large, which may lead to spurious groupings 
of line segments belonging to different lines). Schutz (1961b) indeed found 
that graphs with multiple lines were easier to understand than multiple 
graphs, if the number of lines is small. 

2. Legends or Labeled Lines? As noted earlier, the visual system groups 
stimuli that are in close proximity. A graph schema can exploit this fact 
by specifying that a label near a graph element signals the absolute value 
of a variable for the conceptual message entry specified by that element 
(e.g., in the bar graph schema we examined previously). If the correspond- 
ence is specified instead in an insert or legend (i.e., with a label next to a 
small patch sharing the color, shading, or internal cross-hatching or stip- 
pling of the lines or bars), that correspondence must be extracted by the 
inferential processes, using one entry specifying the distinguishing feature 
of the bar or line in the graph, and a second entry linking that distinguishing 
feature to the appropriate absolute value, based on the legend or insert. 
Therefore, labeled lines should be better (again, assuming the number of 
elements is not so large that spurious groupings arise). 

In fact. Parkin (1983) has conducted an experiment deliberately designed 
to test this prediction of the theory. He composed five methods of labeling 
for line graphs that exploited varying numbers of Gestalt principles to 
associate lines with their labels. He had each label next to its correswndine - 
line somewhere along its length (proximity), next to each line and aligned 
with its end (proximity, good continuation), aligned with the end of each 
line but separated from it by white space (goodcontinuation), in a legend 
(no Gestalt principle) or in the caption (no Gestalt principle). In addition, 
lines and labels were sometimes printed in the same respective colors 
(similarity) and sometimes not. As expected, the greater the number of 
Gestalt principles associating lines with labels (and the fewer the number 
of principles leading to a competing organization of labels with labels), the 
faster subjects were able to answer questions about relative heights and 
slopes of the different lines at given points on the X-axis. As expected, 
this effect interacted with geometric complexity as measured by the number 
of times the lines crossed over one another. For simple graphs, labels close 
to the lines fostered quicker answers than labels next to and aligned to the 
ends of lines, which in turn were quicker to read than labels simply aligned 
with line ends. However, the three labeling methods were equally difficult 
for complex graphs. Similarly, captions and legends were much harder than 
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labeled lines for simple graphs, but only somewhat harder for complex 
graphs. Finally, Parkin found that associating lines with their labels via a 
common color led to quicker responding. Thus, the experiments stand as 
a confirmation of the prediction that the processes used by the visual system 
to associate objects with one another exert effects on how quickly graph 
elements can be associated with their labels, and of the prediction that 
these effects might be weakened or nullified when the graph displays com- 
plex patterns of line intersection. 

XI. THE EFFICIENCY OF A GRAPH READER 

Though I have referred to a single idealized "graph reader," flesh-and- 
blood graph readers will differ from one another in significant ways. For 
example, some people may have swifter elementary information processes, 
or a larger short-term memory capacity, or more powerful inferential proc- 
esses. Though these factors may spell extreme differences in how easily 
different people comprehend graphs, they are not specific to graph com- 
prehension, and 1 will not discuss them further. Instead. I will focus on 
possible differences among people in their abilities to read graphs per se. 

A natural way of determining what makes a person good at reading 
graphs is to examine what makes the graph-reading process more or less 
easy (i.e., the considerations in the preceding section) and to predict that 
individual differences in the nature of the structures and processes involved 
will spell differences in the general ease with which individuals read graphs. 

Recall that in the last section 1 predicted that a given type of information 
was easy to extract from a given type of graph if there were message flags 
in the graph schema specific to that information, and if the visual predicates 
to which the flag was attached were presented in the activated visual de- 
scription of the graph. Each factor allows for individual differences. First, 
a person's graph schema may lack important message flags. Thus, he or 
she may not know that parallel lines in a line graph signal the additivity 
of the effects of two variables on a third. When pressed to determine 
whether additivity holds in a certain graph, such a person would have to 
resort to costly inferential processes operating on a set of entries for ratio 
or absolute values. In general, the theory predicts that the presence or 
absence of message flags in a person's schema will have dramatic effects 
on how easily that person can extract the information specified by the flag. 
Second, the predicates that trigger the process whereby message flags are 
assembled into conceptual message entries may be more or less likely to 
appear in the visual descriptions of different people. The needed predi- 
cates, because of lack of practice at encoding them, may not yet be au- 
tomatic, and hence may have low default encoding likelihoods. Further- 



116 PINKER 

more, the links between those predicates and the rest of the graph schema 
may be weak, dissipating the "priming effect" which assists the encoding 
of missing predicates once a graph has been recognized. 

Of course, this begs the questions of what in fact determines whether 
people have the necessary equation flags in their schemas, and whether 
the encoding likelihoods and links among predicates in a schema will be 
sufficiently strong. As to the first question, there are probably three routes 
to enriching graph schemas with useful flags: 

Being told. It is common for formal instruction in mathematics and ' 
science to spell out what to look for in a graph when faced with a 
particular question. For example, students learning statistical proce- 
dures such as the Analysis of Variance are usually told that nonflat 
lines indicate main effects, nonparallel sets of lines indicate interac- 
tions, U-shaped lines indicate quadratic trends, and so on. 

Induction. An insightful reader or graph maker might notice that 
quantitative trends of a given sort always come out as graphs with 
particular visual attributes (e.g., quadratic functions yield U-shaped 
lines). He or  she could then append the message flag expressing the 
trend to the predicate symbolizing (he visual attribute in the graph 
schema. 

Deduction. Still more insightful readers could infer that owing to the 
nature of the mapping between quantitative scales and visual dimen- 
sions in a given type of graph, a certain quantitative trend must trans- 
late to  a certain visual property. For example, a person could realize 
that the successive doublings of a variable by a particular exponential 
function must lead t o  a curve that becomes increasingly steep from 
left to  right. 

Taken together, these principles suggest that improvements in the ability 
to  read graphs of a given sort will come (a) With explicit instructions 
concerning the equivalences holding between quantitative trends and visual 
attributes (so as to  enrich the graph schema); (b) With instruction as how 
to "see" the graph (i.e., how to parse it perceptually into the right units, 
yielding the appropriate visual description), and with practice at doing so 
(making the encoding process automatic and thereby increasing the en- 
coding likelihoods and associative strengths of the relevant visual predi- 
cates); and (c) With experience at physically plotting different quantitative 
relationships on graph paper (affording opportunities for the induction and 
deduction of further correspondences between visual attributes and quan- 
titative trends, to be added as message flags to the graph schema). 

XII. EMPIRICAL TESTS OF THE THEORY 

AS Wainer and Thissen (1981) note, there has been very little systematic . 
research on the psychology of graph comprehension. Experiments cited 
herein on the relative ease of extracting information from line graphs, bar ,. 
graphs, and tables are consistent with the general claim that graph readers 
can translate visual patterns directly into trend information when possible 
(via message flags appended to visual predicates in graph schemas), that 
readers require that the visual marks signifying values o r  pairs of values 
form good Gestalts, and that absolute value information cannot be per- 
ceived directly from a graph. However, these data alone are not optimal 
tests of the theory, or even of parts of the theory. First, in most cases, we ." 

have no independent evidence for the perceptual phenomena that figure 
into the explanations of graph-reading difficulty. For example, we d o  not 
in fact know that the shape of a line is easier to  perceive than the shape 
implicit in the tops of a set of upright rectangles, or that a segment within 
a smooth curve is harder to isolate perceptually than a closed rectangle in 
the set of stimuli used in these experiments. Without independent evidence 
concerning the perceptual properties of the display, the theory's expla- 
nations risk becoming circular. Second, whenever familiar graph formats 
are used, there is a risk that subjects' explicit training with that format 
prior to entering the lab may influence their responses in a way that may 
undermine attempts to interpret their responses in terms of perceptual 
factors. For example, graphic style manuals advise designers to  use line 
graphs to convey trends. If designers heed this advice, they may on the 
average use line graphs more often in contexts demanding the extraction 
of trends, giving readers more practice reading trends from line graphs. 
In turn, they may come to execute the sequence of mental operations 
necessary to  verify trend information from line graphs more quickly, even 
if the operations themselves were at  first intrinsically difficult, the style 
manuals notwithstanding. 

There are a small number of experiments that I and my collaborators 
have performed which are explicitly designed to test the theory proposed 
here while avoiding the problems described. In Pinker (1983), I report 
three experiments which tested the hypotheses that graph readers have 
knowledge of the correspondences between trends and visual patterns when 
these visual patterns are readily encodable. and that they are then able to 
translate the perceived pattern into the desired trend directly without hav- 
ing to examine more local units one by one. A novel graph format was 
invented, consisting of a chain of line segments joined end to end corre- , 
spending to the months of the year. The length of a segment (greater than 

l, 

or less than an inch) represented the rainfall for that month relative to  a 
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reference level, and its angle with respect t o  the previous segment (greater 
or less than 180") represented its temperature relative to  a reference level 
(or vice versa). It was expected that single values for temperature or rainfall 
would be easier to  extract when encoded as segment length than when 
encoded as segment angle, because the perception of segment angle re- 
quires attention to a pair of segments and normalization of the orientation 
of the first (since we must mentally rotate a pattern into a standard ori- 
entation in order to  determine its handedness-corresponding here to  the 
sign of its angle; Cooper & Shepard, 1973,1975). In contrast, the detection 
of whether temperature o r  rainfall was consistently above or  below the 
reference level, versus sometimes being above it and sometimes below, 
and a similar discrimination involving the detection of alternation, were 
predicted to  be easier when the variable was encoded by segment angle. 
This is because for the angle variable, consistent years yield uniformly 
convex curves and inconsistent years yield curves with a concave region, 
a discrimination our visual systems are adept at making (Hoffman & Rich- 
ards, 1985). whereas the length variable does not yield curves with rec- 
ognizable shape differences contingent on the consistency or alternation 
of the variable. Thus, subjects should be able to  create a graph schema in 
which there are message flags signifying consistency of one of the dependent 
variables appended to the predicate for convexity and message flags sig- 
nifying inconsistency appended to the predicates for concave regions. With 
no such shape predicates for length, there can be no message flags for 
consistency of the other dependent variable. 

In the first experiment, subjects were shown the stimuli described as 
visual patterns, not as graphs, and answered questions about the lengths 
and angles of particular segments o r  the consistency and alternation of the 
lengths o r  angles of the entire sequence. As predicted, single lengths were 
recognized more quickly and accurately than single angles, but consistent 
sequences of lengths were recognized more slowly and less accurately than 
consistent sequences of angles. Presumably, this was because consistency 
of angle translated into convexity, and convexity is an easily encodable 
visual predicate. Thus, the subjects did not have to encode the angle of 
each pair of line segments individually, and as a result, they took less time 
(rather than more) to verify the consistency of the entire sequence of angles 
than to verify a single angle. This independent motivationfor 
predictions about graph-reading difficulty in two subsequent experiments. 
In the second experiment, the stimuli were introduced as graphs and sub- 
jects were told how segment angle and length conveyed information about 
temperature and rainfall, and were also told that consistency of the variable 
conveyed by angle translated into convexity and alternation into zigzags 
(i.e., 1 tried to induce them to form a graph schema with the right message 
flags by telling them about the appropriate trend-shape correspondences 
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directly. As a control for attention differences, I they were also told how 
consistency and alternation of the other variables translated into patterns 
of lengths, though based on the results of the first! experiment it is unlikely 
that visual predicates exist for consistently long cor short sequences of line 
segments). When answering questions about rainifall and temperature, sub- 
jects showed the same pattern of reaction timess as did their counterparts 
in the first experiment when answering questionas about the corresponding 
geometric properties of the stimulus. That is, tthey were faster and more 
accurate at detecting single values of the variablde conveyed by length than 
of the variable conveyed by angle, but showed1 the reverse pattern when 
detecting the cons.istency of the global sequenace. This indicates that the 
subjects, as predicted, were able to exploit the: correspondences between 
trends and shapes that would be encoded expplicitly in a graph schema, 
allowing them toirecognize trends directly witthout examining individual 
point values. 

In a third experiment, subjects were only tol4d how the graphs conveyed 
information about temperature and rainfall for (individual months, not about 
how shapes translated into trends. Nonetheless they, too, showed the in- 
teraction found in the first experiment. (Howvever, they did show the in- 
teraction less strongly, suggesting that being ttold about shape-trend cor- 
respondences for a graph may facilitafe the extraction of those trends, as 
predicted by the: discussion in Section XI.) Ini general, then, these exper- 
iments confirm that a given sort of conceptwal information is easily ex- 
tractable from ai graph to the extent that thee graph encodes the desired 
conceptual information as an easily perceivablle visual predicate and to the 
extent that the correspondence between the t w o  is represented in the mind 
of the reader. 

Simcox (1983) reports three experiments, that are more narrowly ad- 
dressed to the application of these principles I to the issue of line versus bar 
graphs per se. Specifically, Simcox wanted tto see whether there is inde- 
pendent perceptual evidence that in the defaiult case we are more likely to I 

encode a line in terms of its slope and overall! height, whereas we are likely 1 

to encode pairs; of bars into the individual heeight of each one (this putative; 
perceptual phenomenon is at the heart of imy account of the respective; 
superiority of Iline and bar graphs at displajying trend and point informa-- 
tion). He reasoned that whatever attributes w e  do encode by default shouldU 
be available im "pure" form to discriminaation processes and irrelevant! 
information should not interfere with such1 judgments. In contrast, if wee 
have to discriminate stimuli on the basis off some attribute that is not parrt 
of the default tencoding, then the discriminaation would require an intcrnwl 
transformation of the encoded information irnto the desired attributes, whicbh 
should result in more time and errors, andj in interference from values wf 
irrelevant attributes conflated with the desiarcd one in the default encixlingg. 
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In his first cxperimeent, Simcox found that people: could sort a deck of cards 
with bar graph-typoe stimuli into two piles on the: basis of the height of one 
of the bars, and theeir sorting times were not signifificantly affected by whether 
the height of the (other bar was constant or vanried randomly. However, 
when asked to sourt the deck into two piles on1 the basis of the slope or 
average height deffined by the two bars, they werre significantly slower when 
the irrelevant attrribute (average height or sloppe) varied randomly than 
when it was held cconstant. These two patterns arre diagnostic of "separable" 
and "integral" stimuli, respectively (Garner, 19774) and indicate that people 
naturally encode [pairs of bars into a representaation in which the height of 
each one is stated! explicitly; overall height or sllope must be inferred from 
that representatiom. Precisely the opposite patteern was found when subjects 
sorted analogousi decks of cards depicting linee graph-like stimuli. When 
sorting accordingg to the height of one of the endpoints of the lines, the 
subjects were slowed down when the height obf the other endpoint varied 
randomly compaired with when it was constannt. However, when sorting 
according to the: slope of the line or its overaall height, the irrelevant at- 
tribute (overall (height or slope, respectively)) did not affect the sorting 
speed. Thus, a Iline segment depicted within1 an L-shaped framework is 
easily encoded ianto a representation in which1 its overall height and slope 
are stated expliccity; the height of individual endpoints must be inferred 
from that repressentation or encoded in a seccond look at the stimulus. 

In a second eexperiment, Simwx found thaat when subjects are simply 
asked to classifyy the overall height, height of 'one point, or slope of a line 
or pair of bars, they were faster at classifying the height of bars than the 
height of one orf a line's endpoints, but fasteer at classifying the slope or 
overall height obf a line than those defined by i a  pair of bar heights. Finally, 
in a third experiment involving the speeded soorting of a graph-like stimulus 
with two lines, .' Simcox found that sorting by I either height or by slope was 
slowed down when the irrelevant factor (slilope or height, respectively) 
varied randomlily and when the variation of I that irrelevant factor yielded 
intersecting verrsus nonintersecting lines. Hoiwever, when the stimuli were 
varied so that iintersection was not a concomitant of varying the slope or 
height, each off the two attributes could be amended to selectively without 
interference frrom the other. This suggests tthat the global property of line 
intersection finnds its way directly into the 1 default encoding of a pair of 
lines, rather tthan it being a property derivved from heights and slopes of 
the componenrit lines. 

Taken togexher, the Pinker and Simcox sstudies offer strong support for 
the hypothcsiss that is at the core of the pressent theory: that graphs will be 
easy to comprrehend when the visual system rnaturally encodesthigeometric 
features of thie graph with visual predicatess that stand in one-to-one cor- 
respondence ((via the graph schema) with tthe conceptual message that the 
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reader is seeking. The Pinker (1983) study showed that readers indeed can 
infer global quantitative trends directly from global geometric features 
representing them so long as  those global features are ones that our visual 
systems perceive easily. Simcox (1983) showed in particular that this sort 
of explanation can account for the widely observed superiority of line 
graphs at  conveying trends and of bar graphs at conveying point values. 
He did so by showing that, as the theory would require, uninterpreted 
stimuli resembling line graphs are more naturally encoded in terms of the 
overall height, slope, and intersection of lines, whereas uninterpreted stim- 
uli resembling bar graphs are more naturally encoded in terms of the heights 
of the individual bare. 

XIII. EXTENSION OF THE THEORY TO CHARTS 
AND DIAGRAMS 

Quantitative information is not the only kind that is transmitted by visual 
displays, and it would be surprising if the charts and diagrams used to 
express qualitative information were comprehended according to principles 
radically different from those governing graph comprehension. In fact, the 
theory described in these pages can be extended virtually intact to  the 
domain of charts and diagrams. Again, a visual description of the diagram 
would be encoded, obeying the principles of grouping, the indispensability 
of space, and so on, and again, there would be a "chart schema" for a 
particular species of chart, which specified (a) The constituents of the visual 
description that identify the graph as being of the appropriate sort (e.g., 
a flow chart vs. a Venn diagram); and (b) The correspondences between 
visual predicates and conceptual message entries. The conceptua'l message 
entries would be of a form appropriate to the qualitative information rep- 
resented, and conceptual questions would consist of conceptual message 
entries with the "?" symbol replacing one of the constants. The MATCH, 
message assembly, interrogation, and inferential processes would play the 
same roles as before. Charts would be easier or more difficult depending 
on whether the visual system encoded them into units corresponding to 
important chunks of conceptual information, and chart readers would be 
more fluent to  the extent that their chart schemas specified useful corre- 
spondences between conceptual information and visual attributes, and to 
the extent that those visual attributes were encoded reliably. A brief ex- 
ample follows. 

Venn diagrams, used in set theory, consist of interlocking circles, each 
of which represents a mathematical set. Presumably, they are effective 
because the visual system can easily encode patterns of overlap (which 
will translate into set intersection), inclusion (translating into the subset- 
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superset relation), nonoverlap (translating into disjointness), and so on 
(see Ullman, 1984, for a discussion of how some of these patterns might 
be recognized). Simplified Visual Array, Visual Description, Chart Schema, 
and Conceptual Message representations specific to Venn diagrams appear 
in Figs. 4.23a through 4.23d. 

Even from these simplified examples, one can see that, as before, the 
difficulty of retrieving a given type of information will depend on what is 
in the visual description and graph schema and not simply what is on the 
page. For example, here the reader would have to infer the fact that Set 
C is a subset of Set B from the wnceptual message entry stating that Set 
B is a superset of Set C. A more efficient diagram reader might have a 
richer schema, containing the predicate "included-in" together with a mes- 
sage flag stating that one set is a subset of the other. This would spare that 
reader from having to rely on inferential processes. 

Other sorts of diagrams and charts use other visual predicates to convey 
their messages efficiently: For example, flow charts use shape predicates 
tosignify the type of operation (e.g., action vs. test), they use the contiguity 
of shapes with lines to indicate the flow of control, and they use the 
orientation of arrowheads t o  indicate the direction of that flow. The lin- 
guist's tree diagrams for the phrase structure of sentences use horizontal 
position to  signify precedence relations among constituents, proximity to  
common line segments to signify dominance (inclusion) relations, and above1 
below predicates to  signify the direction of the dominance relations. For 
each type of diagram, there would be a specific schema spelling out the 
correspondence between visual predicates and conceptual messages. 

XIV. CONCLUSIONS 

This chapter began with a warning that our understanding of graph com- 
prehension would advance in proportion to our degree of understanding 
of general perceptual and cognitive faculties. As we have seen, the theory 
outlined here indeed borrows heavily from perceptual and cognitive theory, 
adopting, among others, the following assumptions: the importance of 
propositional or structural descriptions at certain levels of representation; 
the indispensability of space as it relates to  visual predicates, selective 
attention, creation of perceptual units, and accuracy of encoding; the lim- 
ited capacity of short-term visual representations; the use of distributed 
coordinate systems for encoding shape and position; the use of schemas 
to mediate between perception and memory; the effects of physical salience 
on encoding likelihood; conceptually driven or top-down encoding of vis- 
ual attributes; a MATCH process for recognition; "priming" of visual 
predicates; and strengthening of associative links with practice. I hope that 
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this enterprise is not totally parasitic, though, since in developing the the- 
ory, significant gaps in our knowledge of visual cognition came to light; 
for example, the exact constraints on which physical attributes can serve 
as visual predicates, the determinants of their likelihood of being encoded, 
the relative strengths of the Gestalt principles, the format in which the 
groupings they impose should be represented in structural descriptions, 
the constraints that determine how message flags can be appended to 
predicates in schemas, the ways that descriptions can guide top-down 
encoding processes, and how general the information in a general schema 
(like the general graph schema) can be. Perhaps the most salient conclusion 
of this exposition, then, is that our understanding of basic cognitive proc- 
esses will be the rate-limiting step in our understanding of applied cognitive 
domains, and that unexplained but pervasive phenomena in applied do- 
mains can be very effective diagnostics of important gaps in that basic 
knowledge. 
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